Lesson 018 The Normal Distribution

Friday, October 20 \& Monday, October 23

"Do you think that the midterm will be graded on a curve?"

The Normal Distribution

- The normal distribution is the single most important distribution in all of statistics and probability.
- Also referred to as the Gaussian distribution.
- It characterizes many natural phenomena (heights, weights, reaction times, etc.)
- It also characterizes much "limiting behaviour" (more on this later)

The Normal Distribution

- It is a symmetric distribution, parameterized by its mean and variance.
- μ is the mean of the distribution.
- σ^{2} is the variance of the distribution.
- We write $X \sim N\left(\mu, \sigma^{2}\right)$
- Thus, $E[X]=\mu$ and $\operatorname{var}(X)=\sigma^{2}$.

The Normal PDF

- There is no closed form expression for the CDF.
- The PDF is defined on $X \in(-\infty, \infty)$ and is

- This can be integrated for probabilities (in theory).

The Normal Distribution: Probability Calculations

- The form of the normal PDF makes calculations challenging, in general.
- Instead of using the PDF directly, we typically rely on external tools.
- Probability tables: allow you to look up probability values for the standard normal, $N(0,1)$.
- Software allows you to compute normal probabilities for any normal distribution.

Minitab Demonstration

If $X \sim N\left(\mu, \sigma^{2}\right)$, what is the probability that $X=2$?
$\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(2-\mu)^{2}}{2 \sigma^{2}}\right)$

$$
\int_{-\infty}^{2} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

$$
\int_{2}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

$$
0
$$

If $X \sim N\left(\mu, \sigma^{2}\right)$, what is the probability that $X \leq 2$?
$\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(2-\mu)^{2}}{2 \sigma^{2}}\right)$

$$
\int_{-\infty}^{2} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

$$
\int_{2}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

$$
0
$$

If $X \sim N\left(\mu, \sigma^{2}\right)$, what is the probability density at $X=2$?

$\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(2-\mu)^{2}}{2 \sigma^{2}}\right)$	0%
$\int_{-\infty}^{2} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x$	0%
$\int_{2}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x$	0%
0	0%
1	0%

If $X \sim N\left(\mu, \sigma^{2}\right)$, what is the probability that $X \geq 2$?
$\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(2-\mu)^{2}}{2 \sigma^{2}}\right)$

$$
\int_{-\infty}^{2} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

$$
\int_{2}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

$$
0
$$

Standardization

- If $X \sim N\left(\mu, \sigma^{2}\right)$, then $a X+b$ remains a normal distribution.
- $E[a X+b]=a E[X]+b=a \mu+b$.
- $\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)=a^{2} \sigma^{2}$

$$
Z=\frac{X-\mu}{\sigma}
$$

Standardization

- We will have $Z \sim N(0,1)$.
- Note:
$P(X \leq a)=P\left(\frac{X-\mu}{\sigma} \leq \frac{a-\mu}{\sigma}\right)=P\left(Z \leq \frac{a-\mu}{\sigma}\right)$
- Probability statements about X can be made into probability statements about Z.
- This is called standardization.

The Standard Normal

- If we have $Z \sim N(0,1)$ then:
- We denote the PDF of Z as $\varphi(z)$.
- We denote the CDF of Z as $\Phi(z)$.
- We have $E[Z]=0$ and $\operatorname{var}(Z)=1$.
- We can go back to arbitrary $X \sim N(\mu, \sigma)$ using $X=\sigma Z+\mu$.

$$
P(Z \leq 3) \text { with } Z=\frac{X-2}{2} .
$$

$$
P(Z \leq 0.5) \text { with } Z=\frac{X-2}{2} \text {. }
$$

$$
P(Z \leq 0.5) \text { with } Z=\frac{X-2}{4} \text {. }
$$

$$
P(Z \leq 3) \text { with } Z=\frac{X-2}{4} .
$$

Suppose that $X \sim N(0,4)$. If we wish to solve $P(-2 \leq X \leq 3)$, which probability is equivalent?

$$
P(-2 \leq Z \leq 3) \text { with } Z=\frac{X}{2}
$$

$$
P(-2 \leq Z \leq 3) \text { with } Z=\frac{X}{4} .
$$

$$
P(-1 \leq Z \leq 1.5) \text { with } Z=\frac{X}{2} .
$$

$$
P(-1 \leq Z \leq 1.5) \text { with } Z=\frac{X}{4} .
$$

Suppose that $X \sim N(-2,9)$. If we wish to solve $P(X \geq-3)$, which probability is equivalent?

$$
P\left(Z \geq-\frac{5}{3}\right) \text { with } Z=\frac{X-2}{3} .
$$

$$
P\left(Z \geq-\frac{5}{3}\right) \text { with } Z=\frac{X+2}{3} \text {. }
$$

$$
P\left(Z \geq-\frac{1}{3}\right) \text { with } Z=\frac{X+2}{9} .
$$

$$
P\left(Z \geq-\frac{1}{3}\right) \text { with } Z=\frac{X+2}{3} \text {. }
$$

\mathbf{Z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{6}$
$\mathbf{0 . 0}$	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	$0 .$,
$\mathbf{0 . 1}$	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0,
$\mathbf{0 . 2}$	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0
$\mathbf{0 . 3}$	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0
$\mathbf{0 . 4}$	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.
$\mathbf{0 . 5}$	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.
$\mathbf{0 . 6}$	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0
$\mathbf{0 . 7}$	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.
$\mathbf{0 . 8}$	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0

The Empirical Rule

- If $X \sim N\left(\mu, \sigma^{2}\right)$ then nearly all density falls within $\mu \pm 3 \sigma$.
- 68% of observations fall in the range $\mu \pm \sigma$.
- 95% of observations fall in the range $\mu \pm 2 \sigma$.
- 99.7% of observations fall in the range $\mu \pm 3 \sigma$.

$$
\begin{gathered}
X \sim N(10,9) \\
P(X \geq 13)=1-P(X \leq 13) \\
P(X \leq \mu+\sigma) \approx 0.5+0.34=0.84 \\
P(X \geq 13) \approx 1-0.84=0.16
\end{gathered}
$$

Critical Values for the Normal Distribution

- Recall that we defined $\eta(p)$ to be the value such that $P(X \leq \eta(p))=p$.
- If we take $Z \sim N(0,1)$, then $\eta(p)$ has $\Phi(\eta(p))=p$.
- In this case we denote $\eta(p)$ as Z_{p}, and call it a critical value for Z.
- Note that $Z_{p}=-Z_{1-p}$. Why?

Common Critical Values

- $Z_{0.975}=1.96$ and $Z_{0.025}=-1.96$.
- Gives $P(-1.96 \leq Z \leq 1.96)=0.95$.
- $Z_{0.95}=1.645$ and $Z_{0.05}=-1.645$.
- Gives $P(-1.645 \leq Z \leq 1.645)=0.90$
- $Z_{0.995}=2.58$ and $Z_{0.005}=-2.58$.
- Gives $P(-2.58 \leq Z \leq 2.58)=0.99$.

Critical Values of Arbitrary Normal Distributions

- If we know Z_{p}, and we want $\eta(p)$ for $X \sim N(0,1)$ we can use the same transformation.
- $\eta(p)=\sigma Z_{p}+\mu$.

$$
\begin{aligned}
P\{X \leq \eta(p)\} & =P\left(Z \leq \frac{\eta(p)-\mu}{\sigma}\right) \\
& =P\left(Z \leq \frac{\sigma Z_{p}+\mu-\mu}{\sigma}\right) \\
& =P\left(Z \leq Z_{p}\right) \\
& =p
\end{aligned}
$$

If we know that $Z_{0.975}$ is 1.96 , then what is $\eta(0.975)$ for $X \sim N(-2,5)$?

$$
\begin{array}{ll}
(-2)(1.96)+\sqrt{5} & 0 \% \\
\sqrt{5}(1.96)-2 & 0 \% \\
\sqrt{5}(1.96)+2 & 0 \% \\
(-2)(1.96)-\sqrt{5} & 0 \%
\end{array}
$$

We know that $Z_{0.95}=1.645$. If $\eta(p)=2$, and $\mu=1$, then what is σ^{2} ?

$$
\begin{array}{ll}
\left(\frac{2-1}{1.645}\right)^{2}=0.3695 & 0 \% \\
\left(\frac{2-1}{1.645}\right)=0.6079 & 0 \% \\
& 0 \% \\
\left(\frac{1.645-1}{2}\right)^{2}=0.1040 & 0 \% \\
\left(\frac{1.645-1}{2}\right)^{2}=0.3225 & 0 \%
\end{array}
$$

Normal Approximation to the Binomial

- Suppose that $X \sim \operatorname{Bin}(n, p)$.
- We know that $E[X]=n p$ and $\operatorname{var}(X)=n p(1-p)$.
- If n is sufficiently large, then we get that $X \dot{\sim} N(n p, n p(1-p))$.
- General rule of thumb $n p \geq 10$ and $n(1-p) \geq 10$.
-Why use the approximation?

Continuity Correction

- Since X is discrete, $\{X \leq 2\}=\{X \leq 2.5\}$.
- We need to use this information for continuous approximations to discrete distributions.
- If we wish to use $X \leq x$ we should consider $X \leq x+0.5$ in the approximation.
- If we wish to use $X \geq x$ we should consider $X \geq x-0.5$ in the approximation.

If we wish to solve $P(X \leq 2)$ using a continuous approximation, where W is approximating X, what probability do we compute for W ?

$$
\begin{array}{ll}
P(W \leq 2) . & 0 \% \\
P(W \leq 2.5) . & 0 \% \\
P(W \leq 1.5) . & 0 \% \\
P(W \in[1.5,2.5]) . & 0 \%
\end{array}
$$

If we wish to solve $P(X<3)$ using a continuous approximation, where W is approximating X, what probability do we compute for W ?

$$
\begin{array}{ll}
P(W \leq 3) . & 0 \% \\
P(W \leq 2.5) . & 0 \% \\
P(W \leq 3.5) . & 0 \% \\
P(W \leq 2) . & 0 \%
\end{array}
$$

Example 1

- Suppose $X \sim \operatorname{Bin}(100,0.25)$. What is $P(X \leq 25)$?
- First, $X \dot{\sim} N(25,18.75)$. Call this W.
- Instead of $\{W \leq 25\}$ we consider $\{W \leq 25.5\}$.
- $P(X \leq 25) \approx P(W \leq 25.5)$.
. $P(W \leq 25.5)=P\left(Z \leq \frac{25.5-25}{18.75}\right)=\Phi\left(\frac{2}{75}\right)$

Example 2

. Suppose $X \sim \operatorname{Bin}\left(50, \frac{1}{3}\right)$. What is $P(X>25)$?

- First, $X \dot{\sim} N\left(\frac{50}{3}, \frac{100}{9}\right)$. Call this W.
- Instead of $\{W>25\}$ we consider $\{W \geq 25.5\}$.
- Note: $\{X>25\}=\{X \geq 26\}$, so $\{W \geq 26\} \rightarrow\{W \geq 25.5\}$.
. $P(X>25) \approx P(W \geq 25.5)=1-\Phi\left(\frac{25.5-50 / 3}{100 / 3}\right)$.

